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We take interest here in nonequilibrium boundary layers for polytropic viscous flows. A
quick physical introduction is given, then we propose an extension of an existing numerical
scheme for the compressible Navier-Stokes equations to take into account slip-boundary
conditions; 2-dimensional numerical simulations are presented. © 1990 Academic Press, Inc.

INTRODUCTION

The prediction of temperature on space shuttles, and more generally on super-
sonic and hypersonic airplanes, has raised the need for a precise description of
physical phenomena within the proximity of obstacles.

Comparison of numerical simulations with experimental data (see, for example,
[17) has shown that compressible Navier—Stokes equations with the usual no-slip
boundary conditions do not give an accurate shock in the case of rarefied gas flows,
which is our concern for the study of a space vehicle entering the atmosphere.

This is due to the fact that the equations of fluid dynamics (compressible Euler
or Navier-Stokes) are an approximation to the kinetic description given by the
Boltzman equation, valid only when the Knudsen number is small (Kn=4/L,
where A is the local mean free path and L is a local characteristic length of the
flow). This is not the case near an obstacle, because L is arbitrarily small (smaller
than the distance to the wall). Consequently, there is a small layer, about one mean
free path thick, which cannot be described by the fluid equations. In the case of a
rarefied flow, this layer has a significant thickness, and we want to consider a non-
equilibrium boundary layer, between the body and the fluid flow, and obtain from
its study boundary conditions for the latter.

A simplified boundary layer model, which we will use here, has been obtained by
Gupta, Scott, and Moss in [2]. Coron, Golse, and Sulem are working on a more
elaborate model; preliminary results are shown in [3].

In part I, we will give a short introduction to the Boltzmann equation and to the
derivation and validity of the fluid approximation. The boundary layer model, and
the derivation of boundary conditions for the Navier-Stokes equations will be out-
lined in Part II (see [2] for more details). Slip and no-slip conditions are compared
from a mathematical point of view in part III, an adaptation of existing numerical
methods for the compresible Navier-Stokes equations is proposed in part IV; flow
simulations are shown in part V.
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KINETIC BOUNDARY LAYERS 19
I. BoLTZMANN EQUATION AND FLUID APPROXIMATION

This is only a very quick and simplified introduction to a large subject; further
information can be found in the books by C. Bardos [8] for basic outlines, by
R. Brun [4], S. Chapman and T. Cowling [5], Truesdell and Muncaster [6] or
G. A. Bird [7] (among others) for extensive details.

At the molecular level, a gas is described by calculating the path of every
molecule, taking into account its interactions with all the others; of course, numeri-
cally this is an impossible task. Statistical models assume that the particles are
numerous enough, ie., that the gas is dense enough, to allow description by a
smooth probability function f(x, v, 1), defined by

mdn=f(x,v,t)d’x d

o
[ay
R

x € R> position,  ve R’ speed, te R* time,

where m is the mass of one particle, dn the number of particles having their
coordinates in an elementary cell d°x® d>v of the state space, here RS, at a given
fime 1.
Then f satisfies
of

5;+UVXf:C(f),

e,
[\
S

where C is a collision operator.
If we also assume that

the particles have no electric charge,

— the gas is monoatomic, so that the particles have only three degrees of
freedom: the three speed components,

— the gas is not too dense, so that collisions involving more than two
particles can be neglected, and the collisions are elastic,

then the collision operator is local in space, and quadratic:

=00 = [ (FTi= 1) allo—vil,w) oy, ()

where
f=f(U,Ul,W)=f(X,U, t) (4’)
fi=filo, v, w)=Ff(x, v, 1) (5)
f'ZfI(U,Ul,W)=f(X,U+(UI—U, W)W7 2) (6)

fi=f’1(v,vl,w):f(x,v1~(vlwv, W)Wa Z)a (7}
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with S?={we R? |w| =1} and q is the diffusion cross section, it depends on the
collision modelling chosen.

The Boltzman equations (2)—(7) is difficult to solve because it is an integro-
differential equation depending on six variables (seven if the problem is time
dependent). Probabilistic and deterministic simulation methods exist (see [7 or 9]
for a recent contribution), but they are very expensive. But if our concern is
aerodynamics, we do not need the complete kinetic solution f, but only some of its
moments: the density p(x, ¢), the momentum pu(x, ) and the total energy E(x, 1),

ple =] flxvndw (8)
(w), (5, 0= v flx o 0d,  i=1,23 )
E(x, z)—_-f ng(x, o, 1) d. (10)

The problem of fluid approximation is to find approximate equations giving p, pu,
and E without solving the Boltzman equation.

The collision being elastic, mass momentum and energy are conserved in
a collision. This implies that

[os naw=0 (11)

[ottnv.do=0 (12)
o s

JowrnS-av=0 (13)

as can be checked directly; 1, v;, |v|*/2 are the summational invariants. Integrating
(2) over the velocity space, one obtains

ap

a1 +div(pu)=0. (14)

Multiplying (2) by v, and integrating, one obtains
0 0 3
- (pu)i+§a;<L3 v, fd u> —0. (15)

Multiplying by |v|?/2, and integrating, one obtains

0 o (¢ o) 3>
g O b2 —0. 1
atE“L;ax,.(fRs S-vfd' ) =0 (16)
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By using
[ flx,0,1)0,d%
)=t 17
R e )
and for a given x and ¢, ¢;=v,—u;, one can rewrite (15} as
0
(gt )+ divipu®u) + diviz) =0, (18)
where 7 is the stress tensor, defined by
ruzjc,-cjf(x, v, 1) d0. {19)
One can rewrite (16) as
0E . . .
E-!_ div(Eu)+ div(u-1) +div g =0, (20)
where ¢ is heat flux vector
|v]? 3 /"
J c.f(x,v,t)d’v (21)

These equations are the conservation laws; they involve p, pu, and E, but also other
moments of f. It is necessary to obtain expressions of these moments depending
only on p, pu, and E and of their derivatives: we want a closing relation for (14),
(15), (16).

In order to do that, we go back to the Boltzman equation. One can show by
taking the continuous limit of a discrete model that the probability of a state
{flx,v, 1), xe R’, ve R?} is given by the opposite of Boltzman’s H function:

H(t)= — j Lﬁ fLog fd*x d*. (22)

H can be shown to be decreasing in time for an isolated system: it is an entropy.
The state with the minimum entropy is the most probable state; it is necessarily a
Mazxwellian,

p lv—u|?
e e d G e )

where p, u, and T are the density, the average speed, and the temperature, and
where k is Boltzmann’s constant, m is the mass of the molecules.

Such a state is said to be at equilibrium; one may suppose that f is locally
“not far” from a Maxwellian when there are no perturbations (shocks, walls, initial
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layers, etc.) near the point under consideration. This is the base of the Chapman—
Enskog expansion: one tries to find f as a Maxwellian plus a small perturbation.
The zero-order expansion is obtained by supposing that fis a Maxwellian

Sflx, 0, 8)=M(x, v, 7). (24)
Replacing f by M in (19), one obtains
y=p(x, 1) T(x, 1) 6, ;= p(x, 1) 6, ;;

p: pressure.
Replacing f by M in (21), one obtains g=0.
So (14), (18), and (20) are now the compressible conservative Euler equations:

0p ] B
-+ div(pu) =0 (25)
a(g ) 4 div(pu®u)+Vp=0 (26)
‘Z—f+ div((E+ p)u) =0. 27)

To have a more accurate result, we suppose that
f=M(1+ep), d=9(x,0,1), (28)

where ¢ = 1/Kn.
The nondimensionalized Boltzman equation can be written as

Lo vt =207 17 29)

replacing f* by M*(1 + ¢¢), we obtain

1 *
Lo, M9+ (aM
e ot

+o* .V M* — 20(M*, M*¢)> + eF(M)=0.

Supposing the factor of order 1/e to be zero, we obtain Q(M*, M*)=0, which is
equivalent to M* being a Maxwellian: we again find that the lowest order
approximation is a Maxwellian.

By equating the factor of order zero to be zero, we obtain

oM*
ot

o -V M*—20(M*, M*$)=0. (30)

This is a Fredholm integral equation for ¢, the orthogonality of the left-hand side
expression to the null space of the operator gives the Euler equations.
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The equation (30) is difficult to solve and does not yield useful results because
the expression for ¢ is too complicated. But one can obtain a good approximation
of the solution by taking ¢ as a linear combination of two special eigenvectors of
the operator: the two first Sonine polynomials.

After some calculations, one obtains

g _La/m5 [m élw.c(f@_é
K p SNkT\2T %T 2

m 1 2 .
+ﬁ<c®c—§c I>.(Vu)>,

P
e
e

Nras

where K is a normalization constant.
Equation (19) then gives

= (J cie; M(1 +8¢)>_ _

LJj

=2u[5 (Vu+Vu') =} (div(u)) 1T+ p, (32)

s n (kT\" .
=78k "\m) (33)

for a Maxwellian interaction potential.
Equation (21) gives

where p is the first viscosity,

75 /T | (kT\'"?
=-wr k) e

where y is the heat diffusion coefficient; (14), (18), and (20) are now the conser-
vative compressible Navier-Stokes equations

aa—i)%—div(pu):{) (36)
Q%pzi)+div(pu®u)+Vp

=div<au<(Vu+Vu’)—§div(u)I)> 3N
%—?4— div[(E+ p)u]

=div [u . ( — U ((Vu +Vu')— % div(u)))} +div{—x VT). (38)
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Remark. These values for u and A are valid only for a monoatomic gas with a
Maxwellian interaction potential. For a diatomic or a triatomic gas, a similar
theory can be developed, but it is much more complicated because the diffusion
cross section is not spheric.

The Chapman-Enskog approximation is obviously not valid in the
neighborhood of a wall, a sufficient reason for that being the anisotropy introduced
by the obstacle.

I1. NONEQUILIBRIUM BOUNDARY LAYER MODELS

The general problem of boundary layers is to derive boundary conditions (see
Fig. 1) for the fluid flow from an assumed behavior of the particles when they hit
the wall. The usual formulation of this problem is shown in Fig. 2.

Given a set of fluid variables at the edge of the Knudsen layer p,, (pu),, E,, the
corresponding Navier—Stokes probability function f,= M (1 +¢,¢,) is known and
consequently the incident fluxes: for ¢, =1, v,, v,, v,, [v|?/2,

F,-=J+co JO JHO v,¢:f(v) d’v.

— Y—ow *—o

Rescaling the problem by 1/4, the calculation of the reflected fluxes R; is a classi-
cal half space problem (see [3 or 10]). The boundary conditions are given by
equating the sum of the incident and reflected fluxes to the known boundary flux

F.+R,=G,; (39)
with

6= [ T veswrd (40)

To avoid resolving the half space problem, one makes assumptions on the behavior
of fin the Knudsen layer.

'}

Knudsen layer

Fluid flow

FIGURE 1
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FIGURE 2

We reproduce here the main points of the rationale developed by Gupta, Scott,
and Moss in [2]. They assume that:

— a proportion 8 of the particles hitting the wall is accomodated and re-
emitted according to a Maxwellian law, the rest is specularly reflected (& is the
accomodation coefficient),

— the fluxes are constant during a “one-way travel” through the Knudsen
layer.

The second hypothesis is a very strong one; it rules out shock-boundary layer
interaction. In this context,

R==0)[ [ [ 0 b0 v nd

— o

o[ i
where
S—BLL —lof?
8 <2(kTw(x, t)/m)> (“2)

Equation (39) then gives the following boundary conditions, when f; is replaced by
its value, and after simplification,

, 2—05m

U= TEA n-Du)-t, (43)
205

w=2 0 An D) <, (@)

where s indices refer to the values at the surface between the Knudsen layer and the
fluid flow, #n is the inward unit vector, t, and 7, are the two tangential normalized
vectors,
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D(u) =Vu+Vu'— 2div(u)]

»° (1 [2—915/16T 5 n 2

0 16T 12 2 JRT,

P
ou-t,) ou-t,) 6(u-n)> -1
><< 0x + 0z 2 on :I)S “45)
T, 1P,
_—T_w_2<p°'+1>
1 3P, I5m2—0 (4 0T\
[5G (75), (46)

where P, is the normal momentum flux.

Only (40) and (41) are useful for the fluid calculation if 7', is unknown; (42) and
(43) allow calculation of the pressure and temperature on the wall once the fluid
flow is known.

More accurate models are under investigation at the Ecole Normale Supérieure
(Bardos er al.); they introduce a boundary layer term y in the Chapman—Enskog
expansion: if the wall is located at x =0,

F=M1 +8¢)+x<§, o, t>.

By rescaling the equation, one obtains a half-space problem for y, the well-posed-
ness of which implies the necessary conditions for M(1 + &¢) and, consequently,
boundary conditions for the fluid flow. Preliminary results [3] show that the
boundary conditions obtained are of the same kind, but with coefficients which are
more reliable than those above.

ITI. Tae COMPRESSIBLE NAVIER—STOKES EQUATION
WITH SLIP BOUNDARY CONDITIONS

We restrict ourselves to the 2-dimensional case for simplicity, and we assume the
viscosity and heat diffusion coefficients to be constant (see Fig. 3), where O € R?

FIGuUre 3
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represents the obstacle, Q the flow domain, I'=00, I, = d2/I". The nondimen-
sionalized Navier-Stokes system is then

dp

R +div{pu)=0 (44)
alpu) L
= 45
PR +div(pu®u)+ Vp Re div(D(u)) (45)
£ 1
66—[+div((E+ PIU) = (div(u(D(u))«}—}—z; AT> (46)
in £2, where
ue R? is the speed
p=(y—1)pT is the pressure,
Re is the Reynolds number at infinity,
Pr is the Prandtl number,
with boundary conditions on I,
u-n=0 47)
n-Du)y-t=—Apu-t (48)
1 y oT
—y. . =0
Re b "FhiReon “9)

where n is the outward normal unit vector to /', T a unit vector tangential to I, and
D(u)=Vu+Vu' — 3V ul.

Equation (47) is a natural boundary condition, assuming there is no mass flux
through the Knudsen layer. Equation (48) is given by (40} and (41); 4 is a positive
constant, depending on the nature of the gas in consideration and on its density

A=p, 0, (503

where ¢ is a physical constant, c = 107 U.S.L for air, and p_, is the physical density
of the gas for away from the body, p,=1,2kgm™> at ground level,
P =10""kgm* at an altitude of 120 km. The characterisation of the rarefaction
of the flow in Eq. ((47)-(53)) is the free-stream density because the equations are
nondimensionalized by taking p =1 at the inflow boundary. Of course, the density
in the vicinity of the wall might be much higher than the free-stream density,
depending on the strength of the shock, so that the slip velocity does not depend
on A only, but also on the free-stream Mach number, for example.



28 PHILIPPE ROSTAND

Equation (49) is the consequence of the known adiabaticity of the wall. We
assume the flow at infinity to be uniform,

u=1(cos a, sin &) (51)
p=1 (52)
. .

- MY o

where M, is the free-stream Mach number and « is the angle of attack.

In fact, we enforce the boundary conditions (51), (52), (53) totally or partially,
according to a local linearized characteristic analysis.

Theoretical results on the compressible Navier-Stokes equations are scarce (see
[11] for a local in time result), but one can check a few necessary conditions for
the well-posedness of the problem: decay of energy and entropy of a smooth
solution, coercivity of the viscous term restricted to the speed space, number of
boundary conditions compared to the signature of the convection Jacobian matrix.

We assume the external boundary I',, to be sufficiently far from the body for the
flow to be uniform in its neighborhood; consequently all derivatives of p, u, and E
are zero on I .

The decay of energy is very easily obtained,

(L")

- v ((E+p)u)+—j V- (u- D) + o j AT

-J

I'urly

1 2
(E+ p)(u- n)+f (—eu D(u)-n Reypr?a%)'

On I,

u-n=0

Y 6T
PrReon

1
Egu-D(u)-n+

so the boundary flux is zero.
On Iy, D(u)=0, 0T/0n=0, and (E+ p)(u-n) is constant, so

| E+ppum=0,

thus
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The decay of entropy is slightly more difficult to obtain. The entropy per unit

mass is ps, with

1ee (P
s-Log( T )

Combining (44), (45), and (46), we obtain

ops _ 1 Y
a7 +V - (pus)= TRe [PrAT+F(Vu)]
with
F(Vu)= (Vu+Vu'—3Vu) : Vu
or
4T 700\>  [ow\? ow dv\* 4dvow
FVu) =] (92} 4 (2) |4 (L 20y 2onw
(V) 3[<ax) +<8y>]+<6x+6y) 39x 3y
If u=(v, w),
20 /700\> [ow\? ow Ov\?* 2/dv ow\?
V=2 (2} +(Z) |+(2+2) 42 (22
vo=3 (%) +(G) [+(Ge5) 55 5)
F(Vu) >0
d(r _ 1 ¢ F(Vu) 1 vy AT
dt(j!zps>_ﬁfgv.(pus)_ReLz T —jQRGPr T
) VT v 10T
<- ) — - L
Lurxps(“ n) ngePr 72 JrurwRePrTan
On T,
u-n=0
y oT 1

Re Pr on —§u-D(u)-n.

But on I', u=(u-1)7, so that

y o 1
RePron Re(u‘T)T-D(u).n'

Using (48),

y 0T A .
Y2 w0
RePron Re’' ¥

(54)

(55

(56}

(57)

(58)
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On I, 0T/0n=0, ps(u-n) is constant, so we obtain

d
- < L) ps> <0. (60)

Coercivity of the Viscous Term

The following results are extensions of R. Verfurth’s work on the incompressible
case (see [12]). The question is on the existence and uniqueness of a solution
ue (HYQ)) of

—div(D(u))=¢ in (6la)
u-n=90 in I (61b)
n-Du)-1=—A(u-1) inI” (61c)

for Q bounded domain of R? ge L*(2), where A is a positive constant, n is the
outward normal unit vector to 0Q, and t is a tangential vector to 0Q.

Let V={ue H(2)* u-n=0 on 0Q}. If we assume Q2 to be regular (say C),
the function

n: 0Q — R?
x — n{x)
is C' and, consequently, the trace operator
HY(Q)— HYX(T)

Uu—u-n

is continuous (see [12] for details). So V with the H'(Q2) norm, as a closed
subspace of H'(Q), is a Hilbert space.
Let ¢ € V; (61) implies, integrating by parts,

%LD(u)-D(¢)+L§V-uv-¢—fr¢-D(u)-rsz 0. (62)

[r¢-D(u)-7 is a well-defined integral if we take u such that —div(D(u))e L*(£2),
because then n- D(u)| e H ~YX(I).
Equation (61c) then implies

Vi e HY2(I), f (n-D(u) -1+ Au-7) =0

=VoeV, j (n-D(u)-7+ Au-1)-(¢-1)=0.
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Equation (62) then implies
VeV

jQD(u)D(¢)+ JV-uv-eta] @own=] g6 ©3)

/
Conversely, it is well known that (63) and u e V imply (61); (63) first implies that
—div(D(u))= g in the distribution sense, so that div(D{u))e L*(Q2), and conse-
quently we have the boundary condition (61c) in H ~'*(I).

To use Lax—Milgram’s theorem, we must prove the coercivity of the bilinear
form ¢;

¢: V>R

u—»lj |D(u)|? + (V u)? + i;j (u-1)?

Where we recall that 4 is a strictly positive constant

|D(u)|? = |Vu+ Vu' — 3V . ul|

= |Vu+Vu'|2 — 2V .u)?
AD@))? +5(V - u)? = 3 Vu + Vu'|? — 1V -u)”.
Hu=(v, w),
w2 (3) +(3)]

oy,

t ow ?

| s () s (2]

So Yue HY(Q),

D(u)|*+ (dlv u)? = 5|Vu+ V')
We will now recall two classical lemmas

(64)

Lemma 1 (Korn’s inequality)
such that

There are two positive constants, depending on

Vue H'(Q),

b =

Lg IV + V') < Cllull 3yo) — Callull 120 (63)
A proof is given in [13]

LEMMA 2 {Poincaré-Morrey)
that

There is a constant C4{($2), strictly positive, such
Yue HY(Q),

581/86/1-3

CA@ il < | Wat B+ [ fuenl | el (66)
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Proof. See [12, Lemma 2.2].

ProPOSITION 1. ¢ is coercive.

Proof. (64), (65), and (66) imply ¢(u)> Clullmq, YueV, if C<(C,/12)
(1/2+ C,/C;) and C< A(C,/C,). So, by Lax—Milgram’s theorem, (61) has a unique
solution.

It is easy to check that no such result exists in three dimensions.

Weak Formulation of (44)-(49), (51)-(53)

It is well known that the boundary condition u-n=0 cannot be enforced
strongly on a polygonal domain: if, for example, u is piecewise linear, if s is a corner
of the boundary, u,-n;=0, u,-n,=0, so u,=0. This means ¥ =0 on the boundary.
Consequently, we will take a weak formulation in (H '(£2))*.

Let ¢, ee HY(RQ), ¥ € H(Q)?, (44)-(49), (51)-(53) be equivalent to

%fﬂ p¢—fg pu-V¢+Lw polug-n)p=0 (67)

%jgpu.¢_jgp(u-vw-u)+frw poltte - m)(u- )
hfg PV.¢+L P0¢-n+LP¢/.n
= —i%e—ng(u):le-i-iléfr n-D(u)-y

e[ oW o+ [ e mm (68)

0
Efg Ea—L) (E+p)u-V£+frw (Eo+ po)(u-n)e

1
= ~Rel, u-D(u)- Ve———f VT-Ve

jrm <u Du)- n+lf ‘; (69)

where uq, po, Ty, Eo, Poare g, po, T'os Evws Poo O U4, p, T, E, P depending on
the signature of the jacobian matrix of the convective terms (see [14 or 15] for
details).
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1V. NUMERICAL METHOD

Efficient finite element methods have been developed in the recent years for the
compressible Navier-Stokes equations (see [14, 15]). They rely on centered
Galerkin approximation with artificial viscosity or upwind finite volume solvers, for
the Euler equations (see [16, 17]). We will only outline these methods here.

The functional space (H'())* is approximated by (P'(22,))*, where Q, is a
polygonal approximation of Q, and P,(,) is the space of piecewise linear functions
on a standard triangulation of Q,. The discretized variational formulation then
reads

[, wadn=EOv 1)+ Nowvis b)Y, (PH@0)Y, (70)

| o

where
Wy = {ph’ (pu)}u (pv)h’ Eh}
E(w,, ¢,) stands for the convection terms, depending on the approximation chosen

(we usually take an upwind Osher approximation, see [18]), N(w,, ¢,) stands for
the diffusion terms

N(w,, ¢,) =N (wy, ¢;,) + Ny(wy, (15%) + Na(w,, (bi) + No(wy, ¢2) (71
with
N (w;, ¢3)=0 (72}

1
Naloey. 63)+ Ny, 1) = —= | Dw)- V65, 47)

gy - ¢h=¢h) )

el ?
[ - DGuy)-m(82, 43)-7)

1
“Rel,
{
S LR SCORTA (73)
1
Natwn 1) = ~gz [ D) Vo575 | VTV9: )

where ¢,=(¢}),~14, u, and T, are P! approximations of (pu),/p, and E,/p, —
1/2((pu),)*/p?, respectively (one can check that u, and 7, are still first-order
approximations of u and T).
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One is usually interested in stationary solutions, so classical time discretizations
are delta schemes,

J, (MO =), 61 = LB}, ) + NOv} 6101, (75)

with M the identity operator for an explicit scheme, a linearization of E in most
implicit schemes.

Slip boundary conditions introduce a new problem: A is often a large constant, so
the system (75) may be ill-conditioned. That is why, while (75) with M =1 — 4t 0E,
OF being a linearization of E, is quite efficient with no-slip boundary conditions,
here it is not: the Courant number is drastically limited for A4 greater than unity.

We introduce a totally implicit factored scheme,

M= (I— A4t ON)(I — At 3E), (76)

where dN is a complete linearization of N, including boundary integrals,

[ anow,) ¢,
1

y
“Re Lgh D(duy)-VIdi. 41+ ¢ Lh Spulus - T(L43, 431 7)

A 1
o I R R R MG COARG AR

Iy

1 n 4 1 n 4
+2e jgh Suy - D(u}) -V +Eéjg,, u, - D(ou}) - V!

v 4
T,)- 7
+Re Pr[ghV(é W) -V, (77)
where 6w, =w}"'—wi.

Equation (76) is solved at each time step in two successive operations:
(I— At CEYOW,) = At[E(w})+ N(w})] (78)
is solved with respect to the conservative variables, and
(I— At ON)(ow,) =W, (79)

is solved with respect to the nonconservative variables.

Although an improvement over existing methods, (76) is not stable enough to
allow very high Mach nuber and low Reynolds flow calculation, which is our goal
for the study of a shuttle reentry. A totally implicit scheme with viscous terms
calculated from the conservative variables is being developed.
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V. FLow SIMULATIONS

These computations were performed on the Cray of the C.C.V.R. and on the IBM
3090 of AMD-BA.

Transonic, supersonic, and hypersonic calculations were performed with slip-and
ne-slip boundary conditions, at different densities, around a NACAO0012 airfoil and
a cylinder; comparison with experimental data taken from [1} is made. In this
preliminary study, the emphasis has been made on the effect of the boundary condi-
tions on the continuum flow, outside the Knudsen iayer. Particular attention has
been given to the shock shape and location.

The first computation made is a flow over a NACAQ012 airfoil at a Mach
number of 2 and a Reynolds number of 106. Two results are presented: the no-slip
flow and the flow at a density of 107° kg/m? The experimental flowfield, at a
density of 1077 kg/m?, taken from [1], are superimposed. The isodensity lines are
shown on Fig, 4. The experimental data is displayed on the upper half of the profile
only, in a thicker and darker line. It appears that slip boundary conditions improve
the precision of numerical results, although the closest to  experiment resuit is

b

Fi16. 4. (a) No-slip iso-density lines. (b) Slip iso-density lines.
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obtained for p,, =10~ kg/m>, which is not the experimental density. The accom-
modation coefficient was taken to be 6 =04.

A transsonic flow over a NACAO0012 airfoil is presented. The Mach number is
0.85 and the Reynolds number is 500; four results are shown: the no-slip flow and
three rarefied flows at densities of 107°kg/m? 10~®kg/m? and 10~7 kg/m>.
Figure 5 is a comparison of the iso-Mach lines obtained with different boundary
conditions. Figure 6 is a comparison of the Mach numbers at the edge of the
Knudsen layer. It is clear that the boundary condition has a spectacular effect on
the results: while the no-slip flow is only weakly transsonic because of the viscous
effects, the most rarefied one has all its viscous influence concentrated in the wake
and is consequently strongly transsonic, with a maximum Mach number of 1.35.

We then computed a high speed flow over a cylinder, at a Mach number of 8 and
a Reynolds number of 1000; four results are presented: the no-slip flow and three
rarefied flows at densities of 10~ *kg/m?, 107> kg/m>, and 10~%kg/m> Figure 7
shows the mesh, which has about 5000 nodes; Fig. 8 shows a comparison of the iso-
Mach lines. The viscous boundary layer shrinks up to almost disappearing, except
around the detachment point; this reduces the “effective” or “inviscid” thickness of
the obstacle and makes the bow shock closer to the wall when the gas is rarefied.

FIiG. 5. Iso-Mach lines: (a) No slip; (b) p,=10"kg/m? (c) p,=10"%kg/m’ (d) p,.=
10~7 kg/m°.
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FiG. 6. Mach number on the body: (a) p,=10""kg/m? (b) p,=10"%kgm% (c} o, =
107 kg/m>.
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NO SLIP CONDITION
[SO-MACH LINES

FREESTREAM MACH 8.00 RE 1000.00
ANGLE OF ATTACK 0.00 SET 2
150-VALEUR
1 0.00000
2 09.40000
3 0.80000
4 1.20000
5 1.60000
6 2.00000
7 2.40000
8 2.80000
9 3.20000
10 3.50000
11 4.00000
12 4.40000
13 4.80000
14 5.20000
15 5.60000
16 6.00080
17 8.u0Ea0
18 6.80080
13 7.20000
20 7.50000
2l 8.00000

SLIP CONDITION DENS = 1.D-# KG/M3
[SO-MACH LINES
FREESTREAM MACH  8.00 RE 1000.00

ANGLE OF ATTACK 9

180-VALEUR
1 0.40000
2  0.80000
3 1.20000
4 1.6000@
5 2.60000
B 2.40000
7 2.80000
8 3.20000
9 3.60000
19 4.00000
1t 4.upeEee
12 4.80000
13 5.20860
4 5.80060
15 5.00800
16 6.U0008
17  6.30000
18 7.20000
19 7.50060
20 8.30800

FiG. 8. Iso-Mach lines: (a) No slip; (b) po=10"*kg/m> (c) po=10""kg/m3 (d) p,=
10-S kg/m".
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SLIP CONDITION DENS = 1.D-5 KG/M3
ISO-MACH LINES

FREESTREAM MACH 8.00 RE 19

@

0.03

ANGLE OF RATTACK 0.00

| ISC-VALEUR
0.40600
@.80090
1.2g000
1.60800
2.00080
2.4800E
2.80830
3.20069
3.63008
0 4.00000
G.40090
2 4.50000
3 5.2000F
4 5.6020C
3

5

P R T

6.36280
6.46080
17 £.8000Q
18 ?7.20008
19 7.8C0OC
20  8.0000G

SLIP CONDITION DENS = 1.D-6 KG/M3
[SO-MACH LINES
FREESTREAM MACH 8.00 AE 1000.0C

BENGLE OF RTIRCK 0.00 SET 12

1 1SC-vALEUR
0.40690
9.80000

1
2
3
4
5
6
8
el

Fi6. 8—Continued
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a

NSC REY=1880.
CHAMP DES VITESSES

INCIDENCE - 0.00 C.F.L. 20.0

R
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Fi6. 9. Speed vectors directions behind the cylinder: (a) No slip, (b) p., =10"*kg/m’;
(€) po =107 kg/m?; (d) p,, = 107 % kg/m”.
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b

NSC REY=10668.
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C

NSC BET=1000.
CHAMP DES VITESSES
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FiGc. 9—Continued
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NO SLIP CONDITION
[SO-MACH LINES
FREESTREAM MACH  8.00 RE 1000. 90

ANGLE CF ATTACK

ISO-VALEUR
1 0.00008
2 B.16608
3 9.20608
4 9.30000
5 0.40808
[ 0.50008
7 8.60008
8 0.70600
9 0.80600
10 9.30000
11 1.66000

1.18000

1.20800

1.30000
15 1.40000

1.50000

1.60880

1.700680

1.80080
20 1.90060
2l 2.00000
22 2.100680
23 2.20000
24 2.30000
25  2.40800
26 2.50000
27 2.60000
28  2.760000
23 2.80000

SLIP CONDITION DENS = 1.D-4 KG/M3

[S0-MACH LINES

FREESTREAM MACH 8.00 RE 1000.00

ISG-VALEUR
0.10000
6.20000
B.30008
0.40000
0.50000
0.60008
0.70000
0.8000Q
9 0.90600
18 1.00000
t1 1.10080
12 1.20000
13 1.30000
14 1.40000

1

1

1

1

® d o g e W —

15 50000
60000
17 . 700080
18 80009
18 1.30000
20 2.00800
21 2.18860
22 2.20000
23 2.30000
24 2.uB000
25 2.50000
26 2.60800
27 2.7060@

Fic. 10. Enlargement of the iso-Mach lines: (a) No slip; (b) p, = 10~ kg/m?; (¢) p., = 10" kg/m?;
(d) poo =107 kg/m’.
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SLIP CONDITION DENS = 1.D-5 KG/M3
ISO-MACH LINES
FREESTREAM MACH  8.00 RE 1000.00
ANGLE OF ATTACK

130-VALEUR

1
2
3
Y
S
]
7
8
9

19
3
12
13
L}
15

B o 3o

1
20
21
22
23
24
25
26
27
28

0.10000
0.2608¢
@.36800
9.40000
0.50000
0.60000
8.78000
0.86080
0.98080
1.80000
1.10000
1.20009
1.30000
1.48009
1.58000
1.66680
1.760090
1.80000
1.38000
2.00008
2.10000
2.26008
2.30000
2.40880
2.50080
2.60606
2.70600
2.80000

SLIP CONDITION DENS = 1.D-B6 KG/M3
ISO-MACH LINES

FREESTREAM MACH 8.00 RE 1008.00

ANGLE OF ATTACK §.00 SET 12

ISG-VALEUR

1
2
3
i
5
[
7
2

Q. 18008
9.20008
@.30008
0.uTI0C
0.50000
©.60800
0.76300
fig ARAN

3
10
11
2
13
14
15
16
17
18
19
26
21
22
23
2u
25
26
27
28
23
am

5.90308
1.06306
18088
-20002
36003
A Gloio/d)
50009
60029
. 70008
.8a080
1.96008
2.00006
2.18009
2.20080

2.30000 =
2.4g00¢
2.50000
2.60000
2.70008 \\
2.80008

\T\\\

2.90009
3. LA6RAR.

31

3.18000

FiG. 10— Continued
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NO SLIP CONDITION
LIGNES ISO-DENSITE

FREESTREAM MACH 8.00 RE 1000.00

150-VALEUR
1 0.ipeee
2 0.15000
3 9.20000
4 9.25000
El 8.30000
G ©.35008
7 9.40000
8 0.U5008
9 0.50008
1B 0.55008
11 0.60880
12 0,65000
i3 0.70000
14 9.75068
15 ©.80000
16 8.85000
17 9.90000
18 0.95008
19 1.00000
05008
. 10000
15008
20000
25009
30000
35000
40000
45000
29 .50080
3R _{. 55000
31 1.60000
32 1.85000

b

™
=

SLIP CONDITION DENS = 1.D-U4 KG/M3

LIGNES ISO-DENSITE

FREESTREAM MACH 8.00 RE 1000.00

1S0-VALEUR
8.15600
$.20800

.. -
1 0. = —
2
3 0.25000 T~ he
“lu e.30000 T \ :
5 6.35000 .
§  0.4g000 \ Z
7 0.45000 A
8 ~ \

0.50000
9 0.55000
18 @.60000
11 0.65008
12 0.70080
13 0.75068
1  0.80060
IS 0.85000
18 @.90088
17 0.85089
18 1.06008
.05008
10008
- 15808
L2006
.25000
.3060@
.35008
48008 o
45000 S -
.50000 _
.55000
1575'0(GI0]
55000
. 70600

™
a

32
FiG. 11. Enlargement of iso-density lines: (a) No slip; {b) p,=10""kg/m* (c)=10""kg/m’;
(d) po, =107 kg/m>.
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SLIP CONDITION DENS =
LIGNES ISO-DENSITE

FREESTREAM MACH

8.00 RE

1.D-5 KG/M3

1000.00

E)

1
2
3
y
5
6
7
8
9
1
H
{
i
1
1
1

B0 E Do

17
13
13
20
21
22
23
KL
25
26
27
28
23
n

1S0-VALEUR
B.
9.
0.
0.
0.
a.
a.
a.
@.
8.
Q.
a.
a.
a.
a.
ad.
a.
0.
00000
.35080
- 10080

1

1

i

30008
35608
1.140600
45000

19000
15000
20006
25008
30000
35000
Lloigkola}
45008
50000
55006
60000
65000
760000
75000
80000
85000
felutetuuf
95008

15080
20660
25000

Eiaclolc)
SE00

/

/

31

1.

€060

'd

SLIP CONDITION DENS =
LIGNES IS0-DENSITE

FREESTREAM MACH

1.D-6 KG/M3

1009.00

a.

eisckalo]

Y.

3.
15 §.75650
1€ £.80088
17 6.85009
1A B.Q0e8R
{13 0.35000
120 1.00000
‘2l 1.85008
122 1. 10000
23 1.15000
24 1.20000
25 1.25008
25 1.30008
27 1.35000
25 1.40606
29 1.4se00
au i saean
31 1.55000

581/36/1-4

FiG. 11— Continued
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@ No SLIP CONDITION  PRESSION
PLAGUE ULI1U1P
MACH 8.00 REYNOLDS 1000
INCIDENCE 0.00—  [TERATION™ 560

MAX = -0.00717

MIN = -1.81701

0]

-1.90 -0.50 0.0

T T[T T T T[T T T[T TTTT

-1.50

NSET= 2
b sLip COND RHO=1.D-U PRESSION
PLAQUE 4141pP
MACH 8.00 REYNOLDS 1000
INCIDENCE 0.00—" I[TERATION 6000
MRX = -0.BO859
MIN = -1.83116
P
Pa
“E e —
?Z L 1 i 1 i 1 1 1 ] 1 L 1 | L 1 1 1 f ‘P
0.0 9.50 1.88  pRoryL

NSET= 9

Fic. 12. Pressure coefficient on the body: (a) No slip; (b) p,, =10"*kg/m?; (c) p, =10"% kg/m>;
(d) po, =10~ kg/m*. 48



c - : -
SLIP COND RHO=1.D0-5 PRESSION
PLAQUE 41UiF
MACH 8.00  REYNOLDS 1000
INCIDENCE 0.00 ITERATION 63C0
MAX = 0.00u76
MIN = }.B6ES:
\
4
%. £ 1 i 1 H i 1 1 i 1 1 L t I i I H L 1 | D
% 0.00 0.50 190 pRoFIL
NSET= 8
d SL1P COND RHO=1.3-6 PRCSSION
PLAGLE 4dlk1?
MACH 8.00 REYNOLDS 1003
INCIDENCE 0.00 [TERATION 600g
MAY - 0.82033
MIN = ~1.83873
-cP
4
't /W
g ! 1
N | m_sm! - N I N " PHD';IL

NSET= 12

Fic. 12— CContinued
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8 N0 SLIP CONDITION DENSITE
PLAQUE U1y1P
MACH 8.00 REYNOLDS 1000
INCIDENCE 0.00 ITERATION 860

MAX = 5.97115

MIN = 8.09573

3.00 4.ee
LRI ERAARRARE R NARY RALRAAARRERRNER!

2.00

1.00

L Lo o oy T N

So.00 8.50 100 profiL
NSET= 2
b SLIP COND RHO=1.D-4 DENSITE
PLAQUE 4141P
MACH 8.00 REYNOLDS 1000
INCIDENCE 0.00 ITERATION 6000
MAX = 5.87500
MIN = 0.10438
T e
~—
2 1 1 1 1 ! L L I 1 I ! L I7 1 1 b
©0.80 0.50 1,00 pROFIL

NSET= ©

Fig. 13. Density on the body (p/p..): (a) No slip; (b) p,,=10"*kg/m3; (¢) p,, =105 kg/m3;
(d) Po = 10-¢ kg/m3 50



© SLIP COND RH0=1.D-5 DENSITE
PLAGUE 41U1P
MACH 8.00 REYNOLDS 1000
INCIDENCE 0.00 ITERATION 506C

MAX = 6.04588

MIN = @.@7220

RO

2.00 3.060 4.00 5.60 6.00

1.08

] { I 1 L >
©0.00 0.50 1.88  pRoFIL

NSLCT= B

d Siip COND RHO=1.D-5 DENSITE
PLAGUE 4i41P

MNCH 8.00 RETYNOLDS 1060
INCIDENCE 0.00 [TERATION 6060
MAX = 5.94888
MIN = 0.00871
bl
.

4
100 pRoFt

NSET= 12
FiG. 13— Continued
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@ g SLIP CONDITION
PLAGUE U141P

COEF DE FROTTEMENT

FROTTEMENT
PN

-.0058 0.0000 9.0050 0.0160
I RERARRIREAS]

ANLALRARRENN LERRRARRRR!

-.01e8

MACH 8.08 REYNOLDS 1000
INCIDENCE ©.00 [TERATION 800
MAX = ©.02196

MIN = -0.00127

0.00 0.50 1.00  prgfr
NSET= 2
b sL1P COND RHO=1.D-4 COEF DE FROTTEMENT
PLRUQUE d4141P
MACH 8.00 REYNOLDS 1000
INCIDENCE 0.00 ITERATION 6000
MAX = B.01466
MIN = -0.00105
FROTTEMENT
: 1 ! 1 1 I 1 1 1 1 1 L 1 I {>
0.50 100 pRFIL

NSET= 8

FiG. 14. Skin friction coefficient: (a) No slip; (b) p,=10""kg/m% (c) p,=10""kg/m?

(d) p, =10~ kg/m’.
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TSLEP COND RHO=1.D-5 COtF DE FROTTEMENT
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The recirculation zone between the wall and the stagnation point is smaller for
rarefied flows, moving with decreasing densities to the perfect gas solution.
Figures 9, 10, and 11 are comparisons of the rear body flows. Figures 12, 13, and
14 are plot of the pressure, density, and friction at the edge of the Knudsen layer.
Pressure and density are not much affected by the boundary conditions, but the
friction decreases quickly as density decreases, which is the awaited behaviour.

CONCLUSION

Significative differences appear between slip and no-slip simulations, the former
seeming to be closer to experimental results. Bow shocks are closer to the obstacles
for slip flows, as indicated by experiment, and the slip boundary conditions give
more generally solutions in better qualitative agreement with the awaited
behaviours. Nevertheless, more accurate comparison with experiment will have to
be made before the model can be tuned and validated.

The slip boundary conditions have been shown to be well posed in the sense
of conservation. They have been included in a numerical scheme to solve the
compressible Navier—Stokes equations, at no major increase in computational cost.
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